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Abstract 
This paper tries to investigate the complex characteristics behind quantity competition using generalized 
relative profit functions. For this purpose, we study the dynamics of a nonlinear Cournot – type duopoly game 
with differentiated goods and generalized relative profit maximization. We suppose a linear demand and 
asymmetric cost functions. The game is modelled with a system of two difference equations. Results 
concerning the equilibria of the economic model and their stability are presented and the occurrence of 
bifurcations is stated. We show that the model gives more complex, chaotic and unpredictable trajectories. 
Numerical experiments are presented. 
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1. Introduction 
 

An oligopoly is a market structure between monopoly and perfect competition, where there 
are only few firms in the market producing homogeneous products. The dynamic of an 
oligopoly game is more complex because firms must consider not only the behaviours of 
the consumers, but also the reactions of the competitors i.e. they form expectations 
concerning how their rivals will act. Cournot, in 1838 has introduced the first formal theory 
of oligopoly. He treated the case with naive expectations, so that in every step each player 
(firm) assumes the last values that were taken by the competitors without estimation of their 
future reactions. 

Expectations play an important role in modelling economic phenomena. A producer can 
choose his expectations rules of many available techniques to adjust his production outputs. 
In this paper we study the dynamics of a duopoly model where each firm behaves with 
heterogeneous expectations strategies. We consider a duopoly model where each player 
forms a strategy in order to compute his expected output. Each player adjusts his outputs 
towards the profit maximizing amount as target by using his expectations rule. Some 
authors considered duopolies with homogeneous expectations and found a variety of 
complex dynamics in their games, such as appearance of strange attractors (Agiza, 1999; 
Agiza et al., 2002; Agliari et al., 2005, 2006; Bischi and Kopel, 2001; Kopel, 1996; Puu, 
1998; Sarafopoulos, 2015b; Sarafopoulos et al., 2019a). Also, models with heterogeneous 
agents were studied (Agiza and Elsadany, 2003, 2004; Agiza et al., 2002; Den Haan, 2001; 
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Fanti and Gori, 2012; Hommes, 2006; Sarafopoulos, 2015a; Sarafopoulos et al.,2017, 2018, 
2019b; Tramontana, 2010; Zhang et al., 2007).  

In the real market producers do not know the entire demand function, though it is possible 
that they have a perfect knowledge of technology, represented by the cost function. Hence, 
it is more likely that firms employ some local estimate of the demand. This issue has been 
previously analysed by Baumol and Quandt (1964), Puu (1995), Naimzada and Ricchiuti 
(2008), Askar (2013, 2014). Bounded rational players (firms) update their production 
strategies based on discrete time periods and by using a local estimate of the marginal profit. 
With such local adjustment mechanism, the players are not requested to have a complete 
knowledge of the demand and the cost functions (Agiza and Elsadany, 2004; Naimzada and 
Sbragia, 2006; Zhang et al., 2007; Askar, 2014). In recent years, maximizing relative profit 
instead of absolute profit has aroused the interest of researchers (Elsadany, 2017; Satoh and 
Tanaka, 2014). In this paper we introduce the concept of generalized relative profit in a 
Cournot – type duopoly game with differentiated goods, linear demand and asymmetric 
cost functions. The paper is organized as follows: In Section 2, the dynamics of the Cournot 
duopoly game with differentiated goods and generalized relative profit maximization is 
analysed. We suppose homogeneous expectations, linear demand and asymmetric cost 
functions. The existence and local stability of the equilibrium points are also analysed. In 
Section 3 numerical simulations are used to show complex dynamics via computing 
Lyapunov numbers, bifurcations diagrams, strange attractors and sensitive dependence on 
initial conditions. Finally, the paper is concluded in Section 4. 
 
 

2. The Game 
 

2.1. The construction of the game 
In this Cournot-type duopoly game two firms produce differentiated goods and offer them 
at discrete time periods (t = 0, 1, 2, …) on a common market. The two firms take the 
decisions about their production also at discrete-time periods (t = 0, 1, 2, …). In this game 
we consider that two players are homogeneous and more specifically, that both firms 
choose their production quantities in a rational way, following the same adjustment 
mechanism (bounded rational players). At every period t, each player must form an 
expectation of the rival’s output of the next time period in order to determine the 
corresponding profit-maximization quantities for period t+1. In this study we suppose that 
the utility function of any player contains a percentage profit of their rival. If are the 
production quantities of each firm, then the inverse demand function (as a function of 
quantities) is given by the following equations: 

                                           , with  and                      (1) 

where  is the price of i firm’s product, and a is a positive parameter which expresses the 
market size. So, for the two players: 

   and                                                    (2) 

Also,  is the parameter which reveals the differentiation degree between two 
products. It is understood that for positive values of the parameter d the larger the value, 
the less diversification there is between two products. If , each firm participates in a 
monopoly. On the other hand, negative values of this parameter describe that two products 
are complementary.  

1 2q ,  q

i i jp q dq= a - - i, j 1, 2= i j¹
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We assume asymmetric cost functions for the players and more specifically, the first player 
uses a linear cost function: 

                                                                  (3) 

and the second player a quadratic cost function: 

                                                                (4) 

(For computational purposes we use the same positive cost parameter , which is the 
marginal cost of player 1 and c < a). 

With these assumptions, the profit function for each player is: 

                                 (5) 

and 

                             (6) 

Then, their marginal profits at the point (q1, q2) of the strategy space are given by: 

      and                           (7) 

Each player cares about the maximization of its utility function that contains his profit and 
a percentage of his rival’s profits (generalized relative profit function). This utility function 
is described by the following equation: 

                                                          (8) 

where . For the players of this game it means that: 

 

                                             (9) 

and 

 

                                    (10) 

Both players follow the same strategy to decide their production quantities (homogeneous 
players) and they are characterized as bounded rational players. It means that they decide 
their productions following a mechanism that is described by the equation: 

 ,                                      (11) 

Through this mechanism each player increases his level of adaptation when his marginal 
utility is positive or decreases his level when his marginal utility is negative, where k is the 
speed of adjustment of two players, it is a positive parameter (k > 0), which gives the extend 
variation production of the firm i following a given utility signal. 
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The dynamical system of the players is described by: 

                                      (12) 

          (13) 

We investigate the effect of the parameter k (speed of adjustment), the parameter μ (relative 
profit parameter) and the parameter d (differentiation degree) on the dynamics of this 
system. 
2.2. Dynamical analysis 
2.2.1. The equilibriums of the game 
The equilibrium positions are the nonnegative solutions of the algebraic system: 

                                                         (14) 

which obtained by setting:  and  in the 
dynamical system of Eq.(12). 

• If  , the equilibrium position is . 

• If  and , the equilibrium position is . 

• If  and  , the equilibrium position is . 

• If  , we obtain: 

                                            (15) 

whose solution is the Nash equilibrium 

 

In the previous equilibrium we assumed: 
                                              (16) 

                                                  (17) 
and 
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                                                (18) 
 

2.2.2. Stability of equilibriums 
The local stability of equilibrium solutions is based on the localization on the complex 
plane of the eigenvalues of the Jacobian matrix of the system Eq. (13) (Gandolfo, 1997, 
Medio and Lines, 2001, Sedaghat, 2003). The Jacobian matrix J (q1, q2) along the variable 
strategy (q1, q2) is: 

                                                         (19) 

where:  

                                                        (20) 

and 

                                                      (21) 

At the Nash equilibrium:  
 

                   (22) 

 

At the equilibrium  the Jacobian matrix is: 

 

                          (23) 
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with eigenvalues  and . Since  and 

 (Eq. (16)), we conclude that  and the equilibrium  
is unstable. For the equilibrium : 

 

      (25) 

 

with eigenvalues  and . Since  and 

 (Eq. (17)), we conclude that  and the equilibrium  is 
unstable. 
To study the local stability of the Nash equilibrium we recall the well-known conditions of 
stability which depend on the trace (T) and the determinant (D) of the Jacobian matrix. For 
a discrete time system in two dimensions the eigenvalues of the Jacobian is inside the unit 
circle of the complex plane if and only if the following conditions are verified: 

                                                        (26) 

(Gandolfo, 1997; Medio and Gallo, 1995; Elaydi, 2005). 

From condition (ii) we obtain: 

                         (27) 

and this condition is always satisfied (  Eq.(18)). 

From the first condition (i) we obtain: 
 

                        (28) 

Finally, from condition (iii) we obtain: 
 

               (29) 

 
From the previous analysis the following proposition is obtained: 
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Proposition: 
The Nash equilibrium of the discrete dynamical system Eq. (13) is locally asymptotically 
stable if: 

 

and 

 

 
Consequences:  

 

• From the first condition we obtain: 

   (First stability condition for k)  (30) 

• The discriminant of Eq. (29) is positive: 

, with                                  (31) 

Consequently, the second condition is true if and only if 

  (Second stability condition for k)                 (32) 

where 

                                         (33) 

are the two real roots of Eq.(29). 

 
 
3. Numerical Simulations 

 
 
3.1. Stability spaces 
 
The 3D stability space (Figure 1) includes the main three parameters that is the parameters 
k (speed of adjustment), d (the differentiation degree between two products) and μ (relative 
profit parameter). This three-dimensional space is obtained by the two stability conditions 
that are described in the previous proposition, setting specific values for the other 
parameters (a=5 and c=1). Figure 2 contains the stability space between the parameters μ 
(horizontal axis) and d (vertical axis), which is obtained by the two stability conditions with 
k = 0.405.  
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Figure 1. 3D stability space between the parameters k, d and μ for a=5, c=1.  

 

Figure 2. Region of stability between μ (horizontal axis) and d (vertical axis) 
for a=5, c=1, k=0.39 

 

 
 

Figure 3 contains the stability space between the parameters k (horizontal axis) and μ 
(vertical axis) which is obtained by the two stability conditions with for a=5, c=1 and d=0.5 
The last stability space (Figure 4) is between the parameters k (horizontal axis) and d 
(vertical axis) for a=5,c= 1 and μ=0.7 
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Figure 3. Region of stability between k (horizontal axis) and μ (vertical axis) 
for a=5, c=1, d=0.5  

 

Figure 4. Region of stability between k (horizontal axis) and d (vertical axis) 
for a=5, c=1, μ=0.1  

 

3.2. Effect of the parameter k (speed of adjustment) on the dynamics of the system Eq. 
(13). 
In this section we present various numerical results focusing on the parameter k, including 
bifurcation diagrams, strange attractors, Lyapunov numbers and sensitive dependence on 
initial conditions (Kulenovic and Merino, 2002; Medio and Gallo, 1995). For this reason, we 
choose to set some fixed values to other parameters as: a =5, c =1, d =0.5 and μ =0.7. As a 
result, we find that  and . Now, it’s easy to form the stability conditions: 

 and  

the final stability condition is exported by the common solutions of these above inequalities 
and they are described as: . It is verified by the bifurcation diagrams of the 

parameter k against the variables  (left) and  (right) that are shown in Figure 5 and 

*
1q 1.91!

*
2q 1.18!

0 k 0.47< < ( ) ( )k 0,0.41 0.53,Î È +¥

( )k 0,0.41Î
*
1q

*
2q



Vol. 11 ♦ Issue 2 ♦ 2019 
 

50 

Figure 6. These two figures show that the equilibrium undergoes a flip bifurcation at
. Then a further increase in speed of adjustment implies that a stable two-period 

cycle emerges for . As long as the parameter k reduces a four-period cycle, 
cycles of highly periodicity and a cascade of flip bifurcations that ultimately lead to 
unpredictable (chaotic) motions are observed when k is larger than 0.54.   

Figure 5. Bifurcation diagrams with respect to the parameter k against the 
variables q1 (left) and q2 (right) with 400 iterations of the map Eq.(13) for a=5, 
c=1, d=0.5 and μ=0.7 

    

 Figure 6. Two bifurcation diagrams of Fig.5 are plotted in one 
 

 
 

As a product of the motion characteristics in chaotic system, strange attractor reflects a 
form of disorder steady state of the chaos. The strange attractor and initial condition 
sensitivity, as the two main characteristics of chaos, reveal some inherent characteristics of 
the system in the chaotic state. This unpredictable (chaotic) behaviour of the system Eq. 
(13) is visualized in Figure 7 (left) with the strange attractor for . This is the graph 
of the orbit of (0.1, 0.1) with 8000 iterations of the map Eq. (13) for a=5, c=1, d=0.5 and 
μ=0.7. Also, we use the useful tool of Lyapunov numbers (Figure 7 (right)) (i.e. the natural 
logarithm of Lyapunov exponents) as a function of the parameter of interest. Figure 7 
(right) shows the Lyapunov numbers of the same orbit. It is known that if the Lyapunov 
number is greater than 1, one has evidence for chaos. 

k 0.41=
0.41 k 0.50< <

k 0.58=
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Figure 7. Phase portrait (strange attractor) (left) and Lyapunov numbers 
(right) of the orbit of (0.1, 0.1) with 8000 iterations of the map Eq.(13) for a=5, 
c=1, d=0.5 , μ=0.7 and k = 0.58 

     

Another characteristic of deterministic chaos is the sensitivity dependence on initial 
conditions. In order to show the sensitivity dependence on initial conditions of the system 
Eq. (13), we have computed two orbits with initial points (0.1, 0.1) and (0.101, 0.1) 
respectively. Figure 8 shows the sensitivity dependence on initial conditions for  
coordinate of the two orbits, for the system Eq.(13), plotted against the time with the 
parameter values a=5, c=1, d=0.5 and μ=0.7 and k=0.58. At the beginning the time series 
are indistinguishable; but after a number of iterations, the difference between them builds 
up rapidly. From these numerical results when all parameters are fixed and only k is varied 
the structure of the game becomes complicated through period doubling bifurcations, more 
complex bounded attractors are created which are aperiodic cycles of higher order or 
chaotic attractors. 

Figure 8. Sensitive dependence on initial conditions for q1 - coordinate plotted 
against the time: the orbit of (0.1, 0.1) (left) and the orbit of (0.101, 0.1) (right) 
of the system Eq. (13) for a=5, c=1, d=0.5, μ=0.7 and k = 0.58 

   

3.3. Effect of the parameter d (product differentiation degree). 
The effect of the parameter d on the dynamics of the system Eq. (13) and the unpredictable 
behaviour of this system is visualized in the next figures. Using the Figure 4 we can find 
that when  and  there is a stable equilibrium for  and it is verified 
by the bifurcation diagrams of d against  (left) and  (right) (Figures 9 and 10). Also, 

1q -

0.1µ = k 0.43= ( )d 0.5,1Î

1q 2q
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a chaotic behaviour for the system Eq. (13) appears for negative values of the parameter d 
(products’ differentiation degree) making the system unpredictable.  

Figure 9. Bifurcation diagrams with respect to the parameter d against the 
variables q1 (left) and q2 (right) with 400 iterations of the map Eq. (13) for a=5, 
c=1, k=0.43 and μ=0.1 

      

Figure 10. Two bifurcation diagrams of Figure 9 are plotted in one 

 

This chaotic behaviour can be shown by the strange attractor (Figure 11 (left)) and the 
Lyapunov numbers (Figure 11 (right)) that are plotted for d= - 0.5.  

Figure 11. Phase portrait (strange attractor) (left) and Lyapunov numbers 
(right) of the orbit of (0.1, 0.1) with 2000 iterations of the map Eq. (13) for a=5, 
c=1, k=0.43, μ=0.1 and d= - 0.5 

   

Finally, the system Eq. (13) becomes sensitive on small changes of its initial conditions 
when the parameter d takes small negative values (Figure 12).   
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Figure 12: Sensitive dependence on initial conditions for -coordinate plotted 
against the time: the orbit of (0.1, 0.1) (left) and the orbit of (0.101, 0.1) (right) 
of the system Eq. (13) for a=5, c=1, k=0.43, μ=0.1 and d= - 0.5 

     

3.4. Effect of the parameter μ (relative profit parameter) 
In this game the parameter μ reveals the percentage of the rival’s profit is taking account 
by each player. The effect of the parameter μ on the dynamics of the system Eq. (13) and 
the unpredictable behaviour of this system is visualized in the next figures. For example, if 
a=5, c = 1, k = 0.39, d = -0.6 complexity appears for very small values of the parameter μ. 
The bifurcation diagrams of the parameter μ against the variables  (left) and  (right)  
are shown in Figure 13 and Figure 14.  

Figure 13. Bifurcation diagrams with respect to the parameter μ against the 
variables q1 (left) and q2 (right) with 400 iterations of the map Eq. (13) for a=5, 
c=1, k=0.39 and d= - 0.6 

    

Figure 14. Two bifurcation diagrams of Fig.13 are plotted in one. 
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These figures show that the equilibrium undergoes a flip bifurcation at μ=0.95. A strange 
attractor for μ=0.04 is visualized also in Figure 15 (left). This is the graph of the orbit of 
(0.1, 0.1) with 8000 iterations of the map Eq. (13) for a=5, c=1, d= - 0.6 and k = 0.39. 
Figure 15 (right) shows the Lyapunov numbers of the same orbit.  

Figure 15. Phase portrait (strange attractor) (left) and Lyapunov numbers 
(right) of the orbit of (0.1, 0.1) with 2000 iterations of the map Eq. (13) for a=5, 
c=1, k=0.39, d= - 0.6 and μ= 0.04 

     

Also, this behaviour has the characteristic sensitivity of this system on its initial conditions 
for the same values of these parameters (Figure 16).      

Figure 16. Sensitive dependence on initial conditions for q1- coordinate plotted 
against the time: the orbit of (0.1, 0.1) (left) and the orbit of (0.101, 0.1) (right) 
of the system Eq. (13) for a=5, c=1, k=0.39, d= - 0.6 and μ= 0.04 

    

 
 

4. Conclusion 
 
 
In this paper, we investigated the complex features behind quantity competition using 
generalized relative profit functions. For this purpose, we analysed the dynamics of a 
differentiated Cournot duopoly with homogeneous expectations, linear demand and 
asymmetric cost functions. By assuming that at each time period each firm maximizes its 
expected relative profit under bounded rationality expectation, a discrete dynamic system 
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was obtained. Existence and stability of equilibrium of this system are studied. We showed 
numerically that the model gives chaotic and unpredictable trajectories. The main result is 
that a lower degree of product differentiation, a lower value of the relative profit parameter 
and a high value of the speed of adjustment may destabilize the Cournot–Nash equilibrium. 
But we showed also that for lower values of the speed of adjustment the equilibrium is 
stable for each value of the differentiation parameter or the relative profit parameter. 
Finally, we find that in the presence of substitute goods there are stable trajectories for each 
value of the relative profit parameter. This work is a part of the theoretical framework of a 
broader research objective which is the study of a duopoly in the Greek market and the 
control of this complexity. 
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